技術文章
一體化A2O污水處理器
閱讀:815 發布時間:2020-2-6一體化A2O污水處理器
污水處理中進行活性污泥馴化時,也可采用體積負荷法來進行馴化,可根據化驗數據、進水指標、系統指標、構筑物體積推算出單位時間的系統污泥負荷。
好氧處理菌種的投加與培養
菌種培養時構筑物的選擇:
方便加菌種、有曝氣裝置、有攪拌、方便進原水或營養液
菌種的投加方案的確定
根據現場具備的條件綜合考慮。如場地、人工、運輸車輛、臨時電源、臨時泵及管道、水槍、高差、過濾等因素。
菌種的粉碎
對于壓縮污泥應考慮污泥的粉碎問題,應根據現場的條件確定粉碎方法。粉碎方法選擇的順序為水槍---泵循環+濾網沖擊---曝氣、攪拌。
菌種活性的恢復
菌種加入后,首先是恢復其活性,由于菌種脫離其原來的好氧環境往往已有較長時間,因此,菌種運輸到現場后應盡快加入培養構筑物,并且加入時,使構筑物處于曝氣過程,每批加完后繼續曝氣,一方面淘汰厭氧菌,另一方面將構筑物內的營養物質消耗,恢復其活性
菌種的培養
在活性恢復后即進入培養階段,目的是使活性污泥盡快生長,以達到一定的數量級。菌種活性恢復期間,同時自身也有部分增殖。菌種的培養可單獨進行,也可與馴化同步進行,通常是以培養為主,即污泥量增加為主,兼顧馴化。如原水濃度較高或毒性較強,培養時應以加營養液或生活污水為主;如原水基本無毒性,碳氮比適當,可在培養階段以原水為主。
一體化A2O污水處理器生物脫氮的基本原理是在將有機氮轉化為氨態氮的基礎上,先利用好氧段經硝化作用,由硝化細菌和亞硝化細菌的協同作用,將氨氮通過反硝化作用轉化為亞硝態氮、硝態氮,即將NH3轉化為NO2--N和NO3--N。在缺氧條件下通過反硝化作用,以硝酸鹽氮為電子受體,以有機物為電子供體進行厭氧呼吸,并有外加碳源提供能量,將硝氮轉化為氮氣,即,將NO2--N(經反亞硝化)和NO3--N(經反硝化)還原為氮氣,溢出水面釋放到大氣,參與自然界氮的循環。水中含氮物質大量減少,降低出水的潛在危險性,達到從廢水中脫氮的目的。