Self versus non-self discrimination during CRISPR RNA-directed immunity
Luciano A. Marraffini1 & Erik J. Sontheimer1
1 Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, 2205 Tech Drive, Evanston, Illinois 60208, USA
2 Correspondence to: Luciano A. Marraffini1Erik J. Sontheimer1 Correspondence and requests for materials should be addressed to L.A.M. and E.J.S.
All immune systems must distinguish self from non-self to repel invaders without inducing autoimmunity. Clustered, regularly interspaced, short palindromic repeat (CRISPR) loci protect bacteria and archaea from invasion by phage and plasmid DNA through a genetic interference pathway1, 2, 3, 4, 5, 6, 7, 8, 9. CRISPR loci are present in ~40% and ~90% of sequenced bacterial and archaeal genomes, respectively10, and evolve rapidly, acquiring new spacer sequences to adapt to highly dynamic viral populations1, 11, 12, 13. Immunity requires a sequence match between the invasive DNA and the spacers that lie between CRISPR repeats1, 2, 3, 4, 5, 6, 7, 8, 9. Each cluster is genetically linked to a subset of the cas (CRISPR-associated) genes14, 15, 16 that collectively encode >40 families of proteins involved in adaptation and interference. CRISPR loci encode small CRISPR RNAs (crRNAs) that contain a full spacer flanked by partial repeat sequences2, 17, 18, 19. CrRNA spacers are thought to identify targets by direct Watson–Crick pairing with invasive ‘protospacer’ DNA2, 3, but how they avoid targeting the spacer DNA within the encoding CRISPR locus itself is unknown. Here we have defined the mechanism of CRISPR self/non-self discrimination. In Staphylococcus epidermidis, target/crRNA mismatches at specific positions outside of the spacer sequence license foreign DNA for interference, whereas extended pairing between crRNA and CRISPR DNA repeats prevents autoimmunity. Hence, this CRISPR system uses the base-pairing potential of crRNAs not only to specify a target, but also to spare the bacterial chromosome from interference. Differential complementarity outside of the spacer sequence is a built-in feature of all CRISPR systems, indicating that this mechanism is a broadly applicable solution to the self/non-self dilemma that confronts all immune pathways
相關產品
免責聲明
- 凡本網注明“來源:化工儀器網”的所有作品,均為浙江興旺寶明通網絡有限公司-化工儀器網合法擁有版權或有權使用的作品,未經本網授權不得轉載、摘編或利用其它方式使用上述作品。已經本網授權使用作品的,應在授權范圍內使用,并注明“來源:化工儀器網”。違反上述聲明者,本網將追究其相關法律責任。
- 本網轉載并注明自其他來源(非化工儀器網)的作品,目的在于傳遞更多信息,并不代表本網贊同其觀點和對其真實性負責,不承擔此類作品侵權行為的直接責任及連帶責任。其他媒體、網站或個人從本網轉載時,必須保留本網注明的作品第一來源,并自負版權等法律責任。
- 如涉及作品內容、版權等問題,請在作品發表之日起一周內與本網聯系,否則視為放棄相關權利。