北大徐福留:非損傷對蕨類耐鎘機制的研究NMT植物重金屬創新科研平臺
NMT作為生命科學底層核心技術,是建立活體創新科研平臺的*技術。2005年~2020年,NMT已扎根中國15年。2020年,中國NMT銷往瑞士蘇黎世大學,正式打開歐洲市場。
研究使用平臺:NMT植物重金屬創新科研平臺
期刊:Chemosphere
主題:NMT對蕨類耐鎘機制的研究
標題:Influence of Cd exposure on H+ and Cd2+ fluxes in the leaf, stem and root of a novel aquatic hyperaccumulator - Microsorum pteropus
影響因子:5.108
檢測指標:Cd2+、H+流速
檢測樣品:有翅星蕨葉片、莖、根成熟區
Cd2+、H+流實驗處理方法:
有翅星蕨在0,100μM和500μM Cd2+濃度中處理7天
Cd2+、H+流實驗測試液成份:
100/500μM CdCl2,0.1 mM KCl and 0.3 mM MES, pH 6.0
作者:北京大學徐福留、蘭心宇
中文摘要(谷歌機翻)
蕨類小種已經被證明是潛在的新型水生鎘超積累物。
在這項研究中,使用非損傷微測技術(NMT)來觀察暴露于Cd下的翼龍不同組織的離子通量。暴露于500 mM Cd的7天后,蕨類植物的根和葉中Cd積累超過1000 mg / kg Cd,莖中Cd積累約600 mg / kg,這表明該植物具有豐富的Cd富集和抗性能力。
NMT試驗發現,鎘暴露后,所有組織中H+通量均增加,其中莖,葉和根的增加大。Cd2þ通量在不同組織中表現出不同的積累水平,低水平的Cd暴露導致流入根和葉,而高水平的Cd暴露導致從根流出。在高水平的Cd暴露下,葉片或低水平和高水平的Cd暴露下,莖中均未觀察到明顯的涌入或流出。
但是,短暫的高水平Cd暴露表明長期Cd2þ流入根部,短期Cd2þ從莖和葉中流出。蕨類植物的根對Cd富集和抗藥性具有更強的調節機制,低水平暴露后出現涌入,高水平暴露后出現外排。當暴露于Cd時,翼龍的莖顯示出較少的運輸和吸收。低水平的鎘暴露導致個別葉片直接從水培溶液中吸收鎘。不同的蕨類植物組織表現出不同的鎘富集和抗性機制。
Fig. 3. Net Hþ fluxes (line charts A-C) and mean Hþ flux (bar chart D) in leaves (A), stems (B), and roots (C) of M. pteropus under 0, 100 and 500 mM Cd exposure. Values followed by different letters are significantly different (p < 0.05).
英文摘要
Microsorum pteropus has been proven to be a potential novel aquatic Cd hyperaccumulator.
In this study, Non-invasive Micro-test Technology (NMT) was used to observe the ion fluxes of different M. pteropus tissues under Cd exposure. M. pteropus can hyperaccumulate more than 1000 mg/kg Cd in roots and leaves and approximately 600 mg/kg Cd in stems after seven days of exposure to 500 mM Cd, showing that this plant have a great capacity for Cd enrichment and resistance.
The NMT test found H+ fluxes increased in all tissues after Cd exposure, with the largest increases being observed in stems, followed by the leaves and roots. Cd2þ fluxes showed different accumulation levels in different tissues, with low-level Cd exposure leading to influxes into roots and leaves, and high level Cd exposure resulting in effluxes from roots. No significant influxes or effluxes were observed in leaves under high-level Cd exposure, or in stems under low- and high-levels of Cd exposure.
However, transient high-level Cd exposure showed long-term Cd2þ influxes into roots and short-term Cd2þ effluxes out of stems and leaves. The roots of M. pteropus had greater regulation mechanisms for Cd enrichment and resistance, with influxes occurring following low-level exposure and effluxes occurring from high-level exposure. When exposed to Cd, M. pteropus stems showed less transportation and absorption. Low-level Cd exposure resulted in individual leaves directly absorbing Cd from hydroponic solutions. Different Cd enrichment and resistance mechanisms were exhibited by different M. pteropus tissues.