可降解生物材料微環境pH分布及其對破骨細胞活性的調節作用
期刊:ACS Appl Mater Interfaces
主題:可降解生物材料周邊微環境pH空間分布及其對破骨細胞活性的調節作用
標題:Spatial Distribution of Biomaterial Microenvironment pH and Its Modulatory Effect on Osteoclasts at Early Stage of Bone Defect Regeneration
影響因子:8.097
監測指標:H+流速
檢測部位:生物材料玻璃材料
H+流速流實驗處理方法:
不同配比的玻璃材料
H+流速流實驗測試液成份:
模擬體液
作者:中科院深圳*技術研究院潘浩波、劉文龍
文獻簡介
2019年2月,中科院深圳*技術研究院潘浩波研究員團隊發表了題為 “Spatial Distribution of Biomaterial Microenvironment pH and Its Modulatory Effect on Osteoclasts at the Early Stage of Bone Defect Regeneration” 的文章,通過關聯可降解生物材料周邊微環境H+離子分布和破骨細胞活性,旨在描繪 “材料-機體” 交互作用之 “微環境” 分布范圍。相關成果發表于ACS Applied Materials and Interfaces。
近年來,由人工組織與機體微環境交互作用而引起的材料學及生物學效應受到越來越多的關注。團隊早期研究發現pH值在調控骨修復過程中破骨與成骨間平衡具有重要作用,并采用微電極技術初步探明存在微堿性范圍內的某一pH 閾值,使得成骨細胞、破骨細胞及骨髓基質干細胞在閾值兩側的活性產生明顯變化(即“開/關”效應)(Liu WL et al., Osteoporosis International, 2016; Shen YH et al., Journal of Materials Chemistry, 2012; Shen YH et al., Langmuir, 2011)。進而,本研究采用非損傷微測技術,考察了系列可降解材料近表面(50-3000μm)氫離子流速及空間分布的梯度效應。相對于表面pH微電極,NMT系統在檢測信號種類,空間和時間的可控性等方面展現出了獨到的優勢。
結果證明,破骨細胞在微堿性環境中(pH>7.8)的分化及侵蝕骨板能力基本喪失;基于此,團隊制備了系列堿性可降解硅硼酸鹽玻璃,并使用NMT系統描繪出與破骨細胞產生“開/關”效應相對應的材料表面微環境的影響范圍(400 ± 50 μm)。為研究“材料-骨組織”早期的相互作用,團隊使用建立的小鼠骨缺損動物模型(Liu WL et al., Tissue Engineering Part C: Methods, 2016),證明了材料周邊堿性微環境能促進骨質疏松骨缺損的快速再生。本研究進而表明,對微環境離子濃度的調控將為未來新材料的設計提供指導意義。
英文摘要
It is generally accepted that biodegradable materials greatly influence the nearby microenvironment where cells reside; however, the range of interfacial properties has seldom been discussed due to technical bottlenecks.
This study aims to depict biomaterial microenvironment boundaries by correlating interfacial H+ distribution with surrounding cell behaviors. Using a disuse-related osteoporotic mouse model, we confirmed that the abnormal activated osteoclasts could be suppressed under relatively alkaline conditions. The differentiation and apatite-resorption capability of osteoclasts were “switched off” when cultured in titrated material extracts with pH values higher than 7.8.
To generate a localized alkaline microenvironment, a series of borosilicates were fabricated and their interfacial H+ distributions were monitored spatiotemporally by employing noninvasive microtest technology. By correlating interfacial H+ distribution with osteoclast “switch on/off” behavior, the microenvironment boundary of the tested material was found to be 400 ± 50 μm, which is broader than the generally accepted value, 300 μm.
Furthermore, osteoporotic mice implanted with materials with higher interfacial pH values and boarder effective ranges had lower osteoclast activities and a thicker new bone.
To conclude, effective proton microenvironment boundaries of degradable biomaterials were depicted and a weak alkaline microenvironment was shown to promote regeneration of osteoporotic bones possibly by suppressing abnormal activated osteoclasts.
中文摘要(谷歌機翻)
人們普遍認為,可生物降解的材料會極大地影響細胞所在的附近微環境。然而,由于技術瓶頸,很少討論界面性質的范圍。
這項研究旨在通過將界面H+分布與周圍細胞行為相關聯來描繪生物材料微環境的邊界。使用與廢品相關的骨質疏松小鼠模型,我們確認了在相對堿性條件下可以抑制異?;罨钠乒羌毎?。當在pH值高于7.8的滴定材料提取物中培養時,破骨細胞的分化和磷灰石吸收能力被“關閉”。
為了產生局部的堿性微環境,制造了一系列的硼硅酸鹽,并采用無創微測試技術對它們的界面H+分布進行了時空監測。通過將界面H+分布與破骨細胞的“開/關”行為相關聯,發現被測材料的微環境邊界為400±50μm,比*的值300μm寬。
此外,植入具有較高界面pH值和邊界有效范圍的材料的骨質疏松小鼠的破骨細胞活性較低,新骨較厚。
總而言之,描繪了可降解生物材料的有效質子微環境邊界,并顯示了弱堿性微環境可能通過抑制異?;罨钠乒羌毎麃泶龠M骨質疏松骨骼的再生。